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Limits of Functions [4.1]
Intuitively limits of functions are the expected value of a function at points that
can’t be solved because they are undefined, e.g.

(x−2)(x+2)
(x−2) would be undefined at x=2, however as x is made sufficiently close

to 2, that value will become arbitrarily close to 4.

The Limit Generally
From early calculus the limit of f(x), as x approaches a was said to be some
value L, denoted limx→a (f (x)) = L

∀ε > 0, ,∃δ :
0 < |x− a| < δ =⇒ |f (x)− L| < ε (1)
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Remarks on this Definition Observe that the following statements are
equivalent:

1. x 6= c ∧ |x− a| < δ

2. 0 < |x− a| < δ

3. |x− a| ∈ (0, δ)

Notation

If L is a limit of f at c, then it is said that:

1. f converges to L at c

2. f (x) approaches L as x approaches c
This is sometimes expressed with the symbolism f (x)→ L as x→ c

And the following notation is used

1. limx→c (f (x)) = L

2. limx→c f

The Limit Using Cluster Points
In analysis we more or less use the same definition but we introduce the concept
of cluster points to make it more rigorous.

Neighborhoods [2.2.7] A neighborhood is an interval about a value, e.g.
the ε-neighborhood of a is some set Vε(a):

Vε(a) = (ε− a, ε+ a) = {x : ε− a < x < ε+ a} (2)
= {x : −ε < x− a < ε} (3)
= {x : |x− a| < ε} (4)

Cluster Points Let c be a real number and let A be a subset of the real
numbers, c may or may not be contained by A it doesn’t matter.
Take some interval around c, or rather consider the ε-neighborhood of c,
if, some value (other than c) can be found inside that interval/neighborhood
that is also inside A, regardless of how small that interval is made, Then c is
said to be a cluster point of A.

i.e., if the following is true
∀ε > 0, ∃x 6= c ∈ A ∩ Vε(c)
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then c is said to be a cluster point of A.

It basically means that there are infinitely infinitesimal points between any
point in A and the value c.

Example

• The point 4 of the set {3, 4, 5} is not a cluster point of that set because a
0.1-neighbourhood of 4 would be the set V0.1(4) = {4}, this set does not
contain a value x 6= 4 that is also inside the original set.

• The point 6 of (1, 6) = {x : 1 < x < 6} is a cluster point of (1, 6) because
no matter how small a neighborhood is made around 6, there will always
be values x 6= 6 inside that interval that are also inside (1, 6)

also observe that in this case 6 /∈ (1, 6)

Definition of the Limit [4.1.4] So this is the definition that we moreso use
in this unit and the one to memorise (or the Neighborhoods one seems simpler
to memorise).

Let A ⊆ R and let c be a cluster point of A.

Now take some function:

f : A→ R (5)

It is said that L is a limit of f at c if:

∀ε > 0, ∃δ > 0 :
(x ∈ A ∧ 0 < |x− c| < δ) =⇒ |f (x)− L| < ε (4.1.4)

What’s the Distinction This is more or less the same as the typical
definition given in early calculus (1), the distinction here is that we have specified
that c must be a cluster point of A, this is more rigorous because c is always
such that there are infinitely many values in any infinitesimal distance between
intself and any x ∈ A,
So the limit will always mean a continuous approach as we expect, this is just
a more thorough definition.
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Definition using Neigborhoods [4.1.6] A value L is said to be the limit
of f as x→ c, denoted limx→c (f (x)) if and only if:

For any given ε-neighbourhood of L, Vε(L)
There exists a δ-neighbourhood of c, Vδ (L)

such that:

If x 6= c is in both A and Vδ (c)
Then f (x) must be within the neighbourhood Vε (L)

Formally

∀ε > 0, ∃δ > 0 :
x 6= c, x ∈ A ∩ Vε (L) =⇒ f (x) ∈ Vδ (c) (4.1.6)

Defintions (4.1.6) and (4.1.4) are equivalent, and are both consistent with the
initial less rigorous definition (1).

Only one Limit Value [4.1.5] If f : A → R and c is a cluster point of A,
then there is only one value L: limx→c (f (x)) = L

Using Sequences to Define Limits [ 4.1.8 ]
Now that limits are defined we can use sequences to define them as well, this
will give us more tools to use later and allows a connection to be made between
material of Chapter 3 and 4.

Definition A value L is said to be the limit of f as x→ c, denoted limx→c (f (x))
if and only if:

For every sequence (xn) in A,

if (xn) converges to c such that xn 6= c,

Then (f (xn)) converges to L

So basically, again, if x gets close to c, f (x) gets close to L, but we took x from
a sequence.
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Divergence Criteria [ 4.1.9 ]
Now we can use the Divergence Criteria from [3.4.5] to determine whether or
not a limit exists generally or at a point.

(a) Limit is not a Specific Value If L ∈ R, then f does not have a limit
at c, if and only if:

There is a sequence (xn) in A with xn 6= c, such that:

(xn) converges to c but the sequence f (xn) does not converge to L

(b) No Limit whatsover If L ∈ R, then f does not have a limit at c, if and
only if:

There is a sequence (xn) in A with xn 6= c, such that:

(xn) converges to c but the sequence f (xn) does not converge in R

The Signum Function The Signum function returns the sign of the input
value:

sgn (x) :=


+ 1 for x > 0

0 for x= 0
− 1 for x < 0

(4.1.10)

= x

|x|

Limit Theorems [4.2]
These are useful for calculating limits of functions, they are mostly extensions
of [3.2].

Bounded Functions
Definition Let A ⊆ R, f : A→ R and let c ∈ R be a cluster point of A.
It is said that f is bounded on a neighbourhood of c if:

there exists a δ-neighborhood Vδ (c) and some constant value M > 0 such
that:

|f (x)| ≤M for every x ∈ A ∩ Vδ (c)
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So basically a function is said to be bounded on a neighbourhood of c if:
for some interval (It doesn’t matter how small) around c,

f(x) can be contained in some interval

∃δ > 0, ∃M > 0 :
x ∈ Vδ (c) =⇒ |f (x)| < M

So for example:

• f (x) = x3 is bounded on every neighborhood of every x ∈ R whereas,

• g (x) = 1/x is not bounded on a neighborhood of 0 because g (x) tends to
infinity as x→ 0,

– furthermore g (x) is bounded on some but notall neighborhoods of 1, because an
interval around 1 must not be drawn large enough to encapsulate 0.

Limits imply Bounded Neighbourhoods [4.2.2 ] A function is bounded
on a neighborhood of a point that is a limit of that function.

If a function has a limit at c, then f must be bounded on some neighborhood of
c,
this flows from the initial definitions because we know that c is a cluster point
and that (f (x)) moves closer to L,
hence it must be possible to draw a small enough interval (e.g. horizontal lines
on the y-axis) to contain all f (x) defined by

Functions and Arithmetic [4.2.3]
Just like with sequences we can define arithmetic operations that relate to ad-
dition and multiplication with functions in order to manipulate them:

Let A ⊆ R ,

f : A→ R g : A→ R h : A→ R, h(x) 6= 0, ∀x ∈ A (6)

We define the following Operations [4.2, p. 111]:
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(f + g) (x) := f (x) + g (x) (7)
(f − g) (x) := f (x) + g (x) (8)

(fg) (x) := f (x)× g (x) (9)
(bf) (x) := b× f (x) (10)(
f

h

)
(x) := f (x)

h (x) (11)

Limits of Function Operations [4.2.4] Because the limit of a func-
tion is essentially the expected value of the function around that value, it stands
to reason that the limit will distribute over the basic operations:

Let the functions be defined as they were in (6) and let c ∈ R be a custer point of A.

lim
x→c

(f) = L lim
x→c

(g) = M lim
x→c

(h) = H 6= 0 (12)

Then the limits are:

lim
x→c

(f + g) = lim
x→c

(f) + lim
x→c

(g)= L+M (13)

lim
x→c

(f − g) = lim
x→c

(f)− lim
x→c

(g) = x− y (14)

lim
x→c

(c · f) = c · lim
x→c

(f) = c · x (15)

lim
x→c

(f × g) = lim
x→c

(f)× lim
x→c

(g) = x× y (16)

lim
x→c

(f/h) = lim
x→c

(f)÷ lim
x→c

(h) = x/y (17)

Limit Theorems
The rest of the chapter just provides values of varios limits.

Let the functions be defined as they were in (6) and let c ∈ R be a custer point of A.

Limits Captured in Intervals [4.2.6]

if f (x) ∈ [a, b] for all x ∈ A, x 6= c, and limx→c (f) exists,

then f (x) ∈ [a, b]
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Squeeze Theorem [4.2.7] if [4.2.6] is extended to functions, then we have
the squeeze theorem:

if g is within an interval defined by the functions f and h:

f (x) ≤ g (x) ≤ h (x) , ∀x ∈ A, x 6= c (18)

then the limit of g must also be 0

lim
x→c

(g) = L (19)

A Positive Limit implies a neighbourhood with Positive Values Let
A ⊆ R and let c ∈ R be a cluster point of A as in (3.4.6) above.

If :

lim
x→c

(f) > 0 (20)

Then:
there is a neighborhood Vδ(c) such that f (x) > 0, ∀x ∈ A ∩ Vδ (c)

This also holds for negative values and basically all it says, in more rigorous
language, is that if the limit point is above the x-axis then there’s gotta be
points to the left and right that are above the x-axis as well (because the whole
cluster point thing means everything can be arbitrarily small).

Although this may start to seem a little pointless, the idea of making the def-
initions this rigorous is like writing code in a scripting language, by using this
very precise language, the logical consequences give us exactly the concept that
we want, even though we need to take a longer or alternate path to get to that
concept than we would otherwise would generally take in order to describe the
concept.

Extensions of the Limit Concept [4.3]
These are written in a particularly convoluted fashion, however if the preceeding
material is understood the textbook can be used more or less as a reference,
hence these notes will be brief.
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One-Sided Limits [4.3.1]
Definition [4.3.1] Let c ∈ R be a cluster point ofA∩(c,∞) = {x ∈ A : x > c}
It is said that L is a Right-hand limit of f at c and it is written:

lim
x→c+

(f) = L (4.3.1)

This can be extended to left-hand limits as well.

Definition in Term of Sequences [4.3.2] As above it is said that L
is a Right-hand limit of f at c if:

Every sequence (xn) in A that converges to c is such that f (xn) converges
to L, given that xn > c, ∀n ∈ N

Limit must be equal on both sides A limit is defined only if the limit is
equal from both directions

lim
x→c

(f) = L ⇐⇒ lim
x→c+

(f) = L = lim
x→c

(f) (3.4.3)

Infinite Limits [4.3.5]
Let c ∈ R be a cluster point of A,
It is aid that f tends to ∞ as x→ c, and it is written:

lim
x→c

(f) =∞ (4.3.5)

If ∀α ∈ R, ∃δ > 0:
0 < |x− c| < δ =⇒ f(x) > α, ∀x ∈ A

One-Sided Limits to Infinity [4.3.8] Let c ∈ R be a cluster point of A ∩
(c,∞) = {x ∈ A : x > c},
It is aid that f tends to ∞ as x→ c+, and it is written:

lim
x→c

(f) =∞ (4.3.8)

If ∀α ∈ R, ∃δ > 0:
0 < x− c < δ =⇒ f(x) > α, ∀x ∈ A

Ordered Functions If f (x) < g (x), then:

lim
x→c

(f) =∞ =⇒ lim
x→c

(g) =∞ (4.3.7 (a))

lim
x→c

(g) = −∞ =⇒ lim
x→c

(f) = −∞ (4.3.7 (b))
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Limits at Infinity [4.3.10]
It is also useful to talk about limits as x tends to ∞

Let (a,∞) ⊆ A ⊆ R for some ainR
It is aid that the limit of f as x→∞ is L, and it is written:

lim
x→∞

(f) = L (4.3.10)

If ∀ε > 0, ∃K > 0:
x > K =⇒ |f (x)− L| < ε

Limits at Infinity in Terms of Sequences [4.3.11] equivalently to
(4.3.10), the definition can be expressed in terms of sequences:

Every sequence (xn) in A ∩ (a,∞) that has lim(xn) = ∞ is such that the
sequence (f (xn)) converges to L

Infinite Limits at Infinity So this basically combines [4.3.10] with [4.3.5]
Let (a,∞) ⊆ A ⊆ R for some a ∈ R

It is aid that f tends to ∞ as x→∞, and it is written:

lim
x→∞

(f) =∞ (4.3.13)

If ∀ε > 0, ∃K > α:
x > K =⇒ f (x) > α

Infinite Limits at Infinity in Terms of Sequences [4.3.14] equiv-
alently to (4.3.13), the definition can be expressed in terms of sequences:

Every sequence (xn) in A ∩ (a,∞) that has lim(xn) = ∞ is such that the
limit of the sequence of function values lim (f (xn)) =∞

Ratios of Functions This result uses (4.3.14) to restate (3.6.5) in terms
of functions:
If g (x) > 0 ∀x > a and L 6= 0 is defined:

limx→∞

(
f (x)
g (x)

)
(4.3.15)

then,

L > 0 =⇒ lim
x→∞

(f) =∞ ⇐⇒ lim
x→∞(g)=∞

(4.3.15 (i))

L < 0 =⇒ lim
x→∞

(f) = −∞ ⇐⇒ lim
x→∞(g)=∞

(4.3.15 (ii))
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