(4) Limits

Contents

Limits of Functions [4.1]

Intuitively limits of functions are the expected value of a function at points that can't be solved because they are undefined, e.g.

 $\frac{(x-2)(x+2)}{(x-2)}$ would be undefined at x=2, however as x is made sufficiently close to 2, that value will become arbitrarily close to 4.

The Limit Generally

From early calculus the limit of $f(x)$, as x approaches a was said to be some value L, denoted $\lim_{x\to a} (f(x)) = L$

$$
\forall \varepsilon > 0, \quad , \exists \delta : 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon
$$
 (1)

Remarks on this Definition Observe that the following statements are equivalent:

1. $x \neq c \land |x - a| < \delta$ 2. $0 < |x - a| < \delta$ 3. $|x - a| \in (0, \delta)$

Notation

If L is a limit of f at c , then it is said that:

- 1. *f* converges to *L* at *c*
- 2. $f(x)$ approaches *L* as *x* approaches *c* This is sometimes expressed with the symbolism $f(x) \to L$ as $x \to c$

And the following notation is used

- 1. $\lim_{x\to c}$ $(f(x)) = L$
- 2. $\lim_{x\to c} f$

The Limit Using Cluster Points

In analysis we more or less use the same definition but we introduce the concept of cluster points to make it more rigorous.

Neighborhoods [2.2.7] A neighborhood is an interval about a value, e.g. the ε -neighborhood of *a* is some set $V_{\varepsilon}(a)$:

$$
V_{\varepsilon}(a) = (\varepsilon - a, \varepsilon + a) = \{x : \varepsilon - a < x < \varepsilon + a\} \tag{2}
$$

 $=\{x: -\varepsilon < x - a < \varepsilon\}$ (3)

 $= \{x : |x - a| < \varepsilon\}$ (4)

Cluster Points Let *c* be a real number and let *A* be a subset of the real numbers, *c* may or may not be contained by *A* it doesn't matter.

Take some interval around *c*, or rather consider the *ε*-neighborhood of *c*,

if, some value (other than *c*) can be found inside that interval/neighborhood that is also inside *A*, regardless of how small that interval is made, Then *c* is said to be a cluster point of *A*.

i.e., if the following is true $\forall \varepsilon > 0, \exists x \neq c \in A \cap V_{\varepsilon}(c)$

then *c* is said to be a cluster point of *A*.

It basically means that there are infinitely infinitesimal points between any point in *A* and the value *c*.

Example

- The point 4 of the set $\{3, 4, 5\}$ is not a cluster point of that set because a 0.1-neighbourhood of 4 would be the set $V_{0,1}(4) = \{4\}$, this set does not contain a value $x \neq 4$ that is also inside the original set.
- The point 6 of $(1,6) = \{x : 1 < x < 6\}$ is a cluster point of $(1,6)$ because no matter how small a neighborhood is made around 6, there will always be values $x \neq 6$ inside that interval that are also inside $(1, 6)$

also observe that in this case $6 \notin (1, 6)$

Definition of the Limit [4.1.4] So this is the definition that we moreso use in this unit and the one to memorise (or the Neighborhoods one seems simpler to memorise).

Let $A \subseteq \mathbb{R}$ and let *c* be a cluster point of A .

Now take some function:

$$
f: A \to \mathbb{R} \tag{5}
$$

It is said that *L* is a limit of *f* at *c* if:

$$
\forall \varepsilon > 0, \exists \delta > 0 :(x \in A \land 0 < |x - c| < \delta) \implies |f(x) - L| < \varepsilon
$$
(4.1.4)

What's the Distinction This is more or less the same as the typical definition given in early calculus (1) , the distinction here is that we have specified that *c* must be a cluster point of *A*, this is more rigorous because c is always such that there are infinitely many values in any infinitesimal distance between intself and any $x \in A$,

So the limit will always mean a continuous approach as we expect, this is just a more thorough definition.

Definition using Neigborhoods [4.1.6] A value *L* is said to be the limit of *f* as $x \to c$, denoted $\lim_{x \to c} (f(x))$ if and only if:

For any given ε -neighbourhood of *L*, $V_{\varepsilon}(L)$ *There exists* a δ -neighbourhood of *c*, $V_{\delta}(L)$

such that:

If $x \neq c$ is in both *A* and $V_\delta(c)$ *Then* $f(x)$ must be within the neighbourhood $V_{\varepsilon}(L)$

Formally

$$
\forall \varepsilon > 0, \exists \delta > 0 :x \neq c, \ x \in A \cap V_{\varepsilon}(L) \implies f(x) \in V_{\delta}(c) \tag{4.1.6}
$$

Defintions $(4.1.6)$ and $(4.1.4)$ are equivalent, and are both consistent with the initial less rigorous definition [\(1\)](#page-1-2).

Only one Limit Value [4.1.5] If $f : A \to \mathbb{R}$ and *c* is a cluster point of *A*, then there is only one value L: $\lim_{x\to c} (f(x)) = L$

Using Sequences to Define Limits [4.1.8]

Now that limits are defined we can use sequences to define them as well, this will give us more tools to use later and allows a connection to be made between material of Chapter 3 and 4.

Definition A value *L* is said to be the limit of f as $x \to c$, denoted $\lim_{x \to c} (f(x))$ if and only if:

For every sequence (x_n) in A ,

if (x_n) converges to *c* such that $x_n \neq c$,

Then $(f(x_n))$ converges to *L*

So basically, again, if x gets close to $c, f(x)$ gets close to L, but we took x from a sequence.

Divergence Criteria [4.1.9]

Now we can use the *Divergence Criteria* from [3.4.5] to determine whether or not a limit exists generally or at a point.

(a) Limit is not a Specific Value If $L \in \mathbb{R}$, then *f* does not have a limit at *c*, if and only if:

There is a sequence (x_n) in *A* with $x_n \neq c$, such that:

 (x_n) converges to *c* but the sequence $f(x_n)$ does not converge to *L*

(b) No Limit whatsover If $L \in \mathbb{R}$, then f does not have a limit at c, if and only if:

There is a sequence (x_n) in *A* with $x_n \neq c$, such that:

 (x_n) converges to *c* but the sequence $f(x_n)$ does not converge in $\mathbb R$

The Signum Function The Signum function returns the sign of the input value:

$$
sgn(x) := \begin{cases} + & 1 & \text{for } x > 0 \\ 0 & \text{for } x = 0 \\ - & 1 & \text{for } x < 0 \end{cases}
$$
(4.1.10)
= $\frac{x}{|x|}$

Limit Theorems [4.2]

These are useful for calculating limits of functions, they are mostly extensions of [3.2].

Bounded Functions

Definition Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of *A*. It is said that *f is bounded on a neighbourhood of c* if:

there exists a δ -neighborhood $V_{\delta}(c)$ and some constant value $M > 0$ such that:

 $|f(x)|$ ≤ *M* for every $x \in A ∩ V$ ^{*δ*} (*c*)

So basically a function is said to be *bounded on a neighbourhood of c* if: for some interval (It doesn't matter how small) around *c*,

 $f(x)$ can be contained in some interval

$$
\exists \delta > 0, \ \exists M > 0 : x \in V_{\delta}(c) \implies |f(x)| < M
$$

So for example:

- $f(x) = x^3$ is *bounded on every neighborhood of every* $x \in \mathbb{R}$ whereas,
- $g(x) = 1/x$ is **not** bounded on a neighborhood of 0 because $g(x)$ tends to infinity as $x \to 0$,
	- **–** furthermore *g* (*x*) is *bounded on some but notall neighborhoods of 1*, because an interval around 1 must not be drawn large enough to encapsulate 0.

Limits imply Bounded Neighbourhoods [4.2.2] A function is bounded on a neighborhood of a point that is a limit of that function.

If a function has a limit at *c*, then *f* must be *bounded on some neighborhood of c*,

this flows from the initial definitions because we know that c is a cluster point and that $(f(x))$ moves closer to L ,

hence it must be possible to draw a small enough interval (e.g. horizontal lines on the *y*-axis) to contain all $f(x)$ defined by

Functions and Arithmetic [4.2.3]

Just like with sequences we can define arithmetic operations that relate to addition and multiplication with functions in order to manipulate them:

Let $A \subseteq \mathbb{R}$,

$$
f: A \to \mathbb{R} \qquad g: A \to \mathbb{R} \qquad h: A \to \mathbb{R}, \ h(x) \neq 0, \ \forall x \in A \tag{6}
$$

We define the following Operations [4.2, p. 111]:

$$
(f+g)(x) := f(x) + g(x)
$$
 (7)

$$
(f-g)(x) := f(x) + g(x)
$$
\n
$$
(8)
$$

$$
(fg)(x) := f(x) \times g(x) \tag{9}
$$

$$
(bf)(x) := b \times f(x) \tag{10}
$$

$$
\left(\frac{f}{h}\right)(x) := \frac{f(x)}{h(x)}\tag{11}
$$

Limits of Function Operations [4.2.4] Because the limit of a function is essentially the expected value of the function around that value, it stands to reason that the limit will distribute over the basic operations:

Let the functions be defined as they were in [\(6\)](#page-6-1) and let $c \in \mathbb{R}$ be a custer point of *A*.

$$
\lim_{x \to c} (f) = L \qquad \lim_{x \to c} (g) = M \quad \lim_{x \to c} (h) = H \neq 0 \tag{12}
$$

Then the limits are:

$$
\lim_{x \to c} (f + g) = \lim_{x \to c} (f) + \lim_{x \to c} (g) = L + M \tag{13}
$$

$$
\lim_{x \to c} (f - g) = \lim_{x \to c} (f) - \lim_{x \to c} (g) = x - y \tag{14}
$$

$$
\lim_{x \to c} (c \cdot f) = c \cdot \lim_{x \to c} (f) \qquad \qquad = c \cdot x \tag{15}
$$

$$
\lim_{x \to c} (f \times g) = \lim_{x \to c} (f) \times \lim_{x \to c} (g) = x \times y \tag{16}
$$

$$
\lim_{x \to c} (f/h) = \lim_{x \to c} (f) \div \lim_{x \to c} (h) = x/y \tag{17}
$$

Limit Theorems

The rest of the chapter just provides values of varios limits.

Let the functions be defined as they were in [\(6\)](#page-6-1) and let $c \in \mathbb{R}$ be a custer point of *A*.

Limits Captured in Intervals [4.2.6]

if $f(x) \in [a, b]$ for all $x \in A$, $x \neq c$, and $\lim_{x \to c} (f)$ exists,

then $f(x) \in [a, b]$

Squeeze Theorem [4.2.7] if [4.2.6] is extended to functions, then we have the squeeze theorem:

if g is within an interval defined by the functions *f* and *h*:

$$
f(x) \le g(x) \le h(x), \quad \forall x \in A, \ x \ne c \tag{18}
$$

then the limit of g must also be 0

$$
\lim_{x \to c} (g) = L \tag{19}
$$

A Positive Limit implies a neighbourhood with Positive Values Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of *A* as in (3.4.6) above.

If :

$$
\lim_{x \to c} (f) > 0 \tag{20}
$$

Then:

there is a neighborhood $V_\delta(c)$ such that $f(x) > 0$, $\forall x \in A \cap V_\delta(c)$

This also holds for negative values and basically all it says, in more rigorous language, is that if the limit point is above the *x*-axis then there's gotta be points to the left and right that are above the *x*-axis as well (because the whole cluster point thing means everything can be arbitrarily small).

Although this may start to seem a little pointless, the idea of making the definitions this rigorous is like writing code in a scripting language, by using this very precise language, the logical consequences give us exactly the concept that we want, even though we need to take a longer or alternate path to get to that concept than we would otherwise would generally take in order to describe the concept.

Extensions of the Limit Concept [4.3]

These are written in a particularly convoluted fashion, however if the preceeding material is understood the textbook can be used more or less as a reference, hence these notes will be brief.

One-Sided Limits [4.3.1]

Definition [4.3.1] Let $c \in \mathbb{R}$ be a cluster point of $A \cap (c, \infty) = \{x \in A : x > c\}$ It is said that *L* is a *Right-hand limit of f at c* and it is written:

$$
\lim_{x \to c^{+}} (f) = L \tag{4.3.1}
$$

This can be extended to left-hand limits as well.

Definition in Term of Sequences [4.3.2] As above it is said that *L* is a *Right-hand limit of f at c* if:

Every sequence (x_n) in *A* that converges to *c* is such that $f(x_n)$ converges to *L*, given that $x_n > c$, $\forall n \in \mathbb{N}$

Limit must be equal on both sides A limit is defined only if the limit is equal from both directions

$$
\lim_{x \to c} (f) = L \iff \lim_{x \to c^{+}} (f) = L = \lim_{x \to c} (f)
$$
\n(3.4.3)

Infinite Limits [4.3.5]

Let $c \in \mathbb{R}$ be a cluster point of A , It is aid that *f* tends to ∞ as $x \to c$, and it is written:

$$
\lim_{x \to c} (f) = \infty \tag{4.3.5}
$$

If ∀*α* ∈ R, ∃*δ >* 0: $0 < |x - c| < \delta \implies f(x) > \alpha, \quad \forall x \in A$

One-Sided Limits to Infinity [4.3.8] Let $c \in \mathbb{R}$ be a cluster point of $A \cap$ $(c, \infty) = \{x \in A : x > c\},\$ It is aid that *f* tends to ∞ as $x \to c^+$, and it is written:

$$
\lim_{x \to c} (f) = \infty \tag{4.3.8}
$$

If
$$
\forall \alpha \in \mathbb{R}
$$
, $\exists \delta > 0$:
 $0 < x - c < \delta \implies f(x) > \alpha$, $\forall x \in A$

Ordered Functions If $f(x) < g(x)$, then:

$$
\lim_{x \to c} (f) = \infty \implies \lim_{x \to c} (g) = \infty \tag{4.3.7 (a)}
$$

$$
\lim_{x \to c} (g) = -\infty \implies \lim_{x \to c} (f) = -\infty
$$
\n(4.3.7 (b))

Limits at Infinity [4.3.10]

It is also useful to talk about limits as x tends to ∞

Let $(a, \infty) \subseteq A \subseteq \mathbb{R}$ for some $ain \mathbb{R}$

It is aid that the limit of *f* as $x \to \infty$ is *L*, and it is written:

$$
\lim_{x \to \infty} (f) = L \tag{4.3.10}
$$

If $\forall \varepsilon > 0, \exists K > 0$: $\hat{x} > K \implies |f(x) - L| < \varepsilon$

Limits at Infinity in Terms of Sequences [4.3.11] equivalently to [\(4.3.10\)](#page-10-0), the definition can be expressed in terms of sequences:

Every sequence (x_n) in $A \cap (a, \infty)$ that has $\lim(x_n) = \infty$ is such that the sequence $(f(x_n))$ converges to L

Infinite Limits at Infinity So this basically combines [4.3.10] with [4.3.5] Let $(a, \infty) \subseteq A \subseteq \mathbb{R}$ for some $a \in \mathbb{R}$

It is aid that *f* tends to ∞ as $x \to \infty$, and it is written:

$$
\lim_{x \to \infty} (f) = \infty \tag{4.3.13}
$$

If $\forall \varepsilon > 0$, $\exists K > \alpha$: $x > K \implies f(x) > \alpha$

Infinite Limits at Infinity in Terms of Sequences [4.3.14] equivalently to $(4.3.13)$, the definition can be expressed in terms of sequences:

Every sequence (x_n) in $A \cap (a, \infty)$ that has $\lim(x_n) = \infty$ is such that the limit of the sequence of function values $\lim (f(x_n)) = \infty$

Ratios of Functions This result uses (4.3.14) to restate (3.6.5) in terms of functions:

If $g(x) > 0 \ \forall x > a$ and $L \neq 0$ is defined:

$$
lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right) \tag{4.3.15}
$$

then,

$$
L > 0 \implies \lim_{x \to \infty} (f) = \infty \iff \lim_{x \to \infty} (g) = \infty \tag{4.3.15 (i)}
$$

$$
L < 0 \implies \lim_{x \to \infty} \left(f \right) = -\infty \iff \lim_{x \to \infty} \left(g \right) = \infty \tag{4.3.15 (ii)}
$$