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Limits of Functions [4.1]

Intuitively limits of functions are the expected value of a function at points that

can’t be solved because they are undefined, e.g.
% would be undefined at x=2, however as x is made sufficiently close

to 2, that value will become arbitrarily close to 4.

The Limit Generally

From early calculus the limit of f(x), as x approaches a was said to be some
value L, denoted lim,_,, (f (z)) =L

Ve >0, ,30:
O0<|z—a|<d = |f(z)—L|<e (1)
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Remarks on this Definition Observe that the following statements are
equivalent:

l.z#c A |[x—a|<$§
2.0<|z—al<é

3. |z —a] €(0,9)
Notation

If L is a limit of f at ¢, then it is said that:
1. f converges to L at ¢

2. f(zx) approaches L as x approaches ¢

This is sometimes expressed with the symbolism f (x) = L as ¢ — ¢

And the following notation is used

1. limg . (f (z)) =L

2. lim, . f

The Limit Using Cluster Points

In analysis we more or less use the same definition but we introduce the concept
of cluster points to make it more rigorous.

Neighborhoods [2.2.7] A neighborhood is an interval about a value, e.g.
the e-neighborhood of a is some set V. (a):

Vela)=(e—a,e+a)={zx:e—a<z<e+a} (2)
={r:—e<z—-a<e} (3)
={z:|z—a|<e} (4)

Cluster Points Let ¢ be a real number and let A be a subset of the real
numbers, ¢ may or may not be contained by A it doesn’t matter.

Take some interval around ¢, or rather consider the e-neighborhood of ¢,

if, some value (other than ¢) can be found inside that interval/neighborhood
that is also inside A, regardless of how small that interval is made, Then ¢ is
said to be a cluster point of A.

i.e., if the following is true
Ve >0, dz£ce ANV.(c)
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then c is said to be a cluster point of A.

It basically means that there are infinitely infinitesimal points between any
point in A and the value c.

Example

e The point 4 of the set {3,4,5} is not a cluster point of that set because a
0.1-neighbourhood of 4 would be the set Vp.1(4) = {4}, this set does not
contain a value x # 4 that is also inside the original set.

o The point 6 of (1,6) = {z: 1 < x < 6} is a cluster point of (1,6) because
no matter how small a neighborhood is made around 6, there will always
be values = # 6 inside that interval that are also inside (1, 6)

also observe that in this case 6 ¢ (1,6)

Definition of the Limit [4.1.4] So this is the definition that we moreso use
in this unit and the one to memorise (or the Neighborhoods one seems simpler
to memorise).

Let A C R and let ¢ be a cluster point of A.

Now take some function:
fiA—=R (5)
It is said that L is a limit of f at c if:

Ve>0,36>0:
(xeA N O<|z—c|<d) = |f(x)—L|<e (4.1.4)

What’s the Distinction This is more or less the same as the typical
definition given in early calculus (1), the distinction here is that we have specified
that ¢ must be a cluster point of A, this is more rigorous because c is always
such that there are infinitely many values in any infinitesimal distance between
intself and any x € A,

So the limit will always mean a continuous approach as we expect, this is just
a more thorough definition.
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Definition using Neigborhoods [4.1.6] A value L is said to be the limit
of f as x — ¢, denoted lim,_,. (f (z)) if and only if:

For any given e-neighbourhood of L, V(L)
There exists a d-neighbourhood of ¢, Vs (L)

such that:

If x # cis in both A and Vj (¢)
Then f (z) must be within the neighbourhood V; (L)

Formally

Ve >0, 36 > 0:
x#c, e ANV, (L) = f(x) € Vs(c) (4.1.6)

Defintions (4.1.6) and (4.1.4) are equivalent, and are both consistent with the
initial less rigorous definition (1).

Ounly one Limit Value [4.1.5] If f: A — R and c is a cluster point of A,
then there is only one value L: lim, . (f (z)) =L

Using Sequences to Define Limits [ 4.1.8 ]

Now that limits are defined we can use sequences to define them as well, this
will give us more tools to use later and allows a connection to be made between
material of Chapter 3 and 4.

Definition A value L is said to be the limit of f as x — ¢, denoted lim,_,. (f (z))
if and only if:

For every sequence (x,) in A,
if (x,) converges to ¢ such that x,, # c,
Then (f (x,)) converges to L

So basically, again, if « gets close to ¢, f (z) gets close to L, but we took x from
a sequence.
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Divergence Criteria [ 4.1.9 |

Now we can use the Divergence Criteria from [3.4.5] to determine whether or
not a limit exists generally or at a point.

(a) Limit is not a Specific Value If L € R, then f does not have a limit
at ¢, if and only if:

There is a sequence (x,,) in A with x,, # ¢, such that:

(z,) converges to ¢ but the sequence f (x,) does not converge to L

(b) No Limit whatsover If L € R, then f does not have a limit at ¢, if and
only if:

There is a sequence (x,,) in A with x,, # ¢, such that:

(z,,) converges to ¢ but the sequence f (x,) does not converge in R

The Signum Function The Signum function returns the sign of the input
value:

+ 1 for x> 0
sgn (z) == 0 for x=0 (4.1.10)
-1 for x < 0
oz
s

Limit Theorems [4.2]

These are useful for calculating limits of functions, they are mostly extensions
of [3.2].

Bounded Functions

Definition Let ACR, f: A — R and let ¢ € R be a cluster point of A.
It is said that f is bounded on a neighbourhood of c if:

there exists a d-neighborhood Vs (¢) and some constant value M > 0 such
that:

|f (z)| < M for every z € AN V;(c)
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So basically a function is said to be bounded on a neighbourhood of c if:
for some interval (It doesn’t matter how small) around ¢,
f(z) can be contained in some interval

36>0, IM>0:
zeVs(e) = |f(x)|<M

So for example:

o f(x) =23 is bounded on every neighborhood of every x € R whereas,

o g(x) = 1/x is not bounded on a neighborhood of 0 because g (z) tends to
infinity as =z — 0,

— furthermore g (z) is bounded on some but notall neighborhoods of 1, because an

interval around 1 must not be drawn large enough to encapsulate 0.

Limits imply Bounded Neighbourhoods [4.2.2 ] A function is bounded
on a neighborhood of a point that is a limit of that function.

If a function has a limit at ¢, then f must be bounded on some neighborhood of
&

this flows from the initial definitions because we know that ¢ is a cluster point
and that (f (x)) moves closer to L,

hence it must be possible to draw a small enough interval (e.g. horizontal lines
on the y-axis) to contain all f (x) defined by

Functions and Arithmetic [4.2.3]

Just like with sequences we can define arithmetic operations that relate to ad-
dition and multiplication with functions in order to manipulate them:

Let ACR,
f:A=R ¢g:A->R h:A—=R, h(z)#0, Vz € A (6)

We define the following Operations [4.2, p. 111]:
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(f+9) (@)= [f(z)+g() (7)
(f—9) (@)= f(z)+g(x) (8)
(fg) (x) == f(2) x g(x) (9)
(0f) (z) :==bx f(z) (10)
(22

Limits of Function Operations [4.2.4] Because the limit of a func-
tion is essentially the expected value of the function around that value, it stands
to reason that the limit will distribute over the basic operations:

Let the functions be defined as they were in (6) and let ¢ € R be a custer point of A.

lim (f)=1L lim(g) =M lim(h)=H#0 (12)

Tr—C r—c r—cC

Then the limits are:

lim (f +g) = lim (f) + lim (¢9)= L + M (13)
lim (f —g) = lim (f) - lim (9) =z -y (14)
lim (c- f) = ¢- lim (f) =cox (15)
lim (f x g) = lim (f) x lim (9) ==z xy (16)
lim (f/h) = lim (f) + lim (h) = =/y (17)

Limit Theorems

The rest of the chapter just provides values of varios limits.

Let the functions be defined as they were in (6) and let ¢ € R be a custer point of A.
Limits Captured in Intervals [4.2.6]

if f(x)€la,b]forallze A, z#c, and lim,_,. (f) exists,

then f(x) € [a,b]
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Squeeze Theorem [4.2.7] if [4.2.6] is extended to functions, then we have
the squeeze theorem:

if g is within an interval defined by the functions f and h:

fe)<g(e) <h(z), VeeAd z#c (18)

then the limit of g must also be 0

lim (g) =L (19)

r—c

A Positive Limit implies a neighbourhood with Positive Values Let
A CR and let ¢ € R be a cluster point of A as in (3.4.6) above.

If:
lim (f) > 0 (20)

r—cC

Then:
there is a neighborhood Vs(c) such that f (z) >0, Vz € AN Vs (c)

This also holds for negative values and basically all it says, in more rigorous
language, is that if the limit point is above the z-axis then there’s gotta be
points to the left and right that are above the z-axis as well (because the whole
cluster point thing means everything can be arbitrarily small).

Although this may start to seem a little pointless, the idea of making the def-
initions this rigorous is like writing code in a scripting language, by using this
very precise language, the logical consequences give us exactly the concept that
we want, even though we need to take a longer or alternate path to get to that
concept than we would otherwise would generally take in order to describe the
concept.

Extensions of the Limit Concept [4.3]

These are written in a particularly convoluted fashion, however if the preceeding
material is understood the textbook can be used more or less as a reference,
hence these notes will be brief.
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One-Sided Limits [4.3.1]

Definition [4.3.1] Let c € R be a cluster point of AN(¢c,00) ={x € A : = >c}
It is said that L is a Right-hand limit of f at ¢ and it is written:

lim (f) =L (4.3.1)

r—ct

This can be extended to left-hand limits as well.

Definition in Term of Sequences [4.3.2] As above it is said that L
is a Right-hand limit of f at c if:

Every sequence (x,) in A that converges to c¢ is such that f (z,) converges

to L, given that z,, > ¢, Vn € N

Limit must be equal on both sides A limit is defined only if the limit is
equal from both directions

lim (f) = L <= lim (f) =L = lim (f) (3.4.3)

r—cC z—ct T—C

Infinite Limits [4.3.5]

Let ¢ € R be a cluster point of A,
It is aid that f tends to co as x — ¢, and it is written:

lim (f) = o0 (4.3.5)

Tr—c

If Yo € R, 36> 0:
O<|z—¢<d = flx)>a, VrecA

One-Sided Limits to Infinity [4.3.8] Let ¢ € R be a cluster point of AN
(c,o0)={z €A : z>c},
It is aid that f tends to oo as x — ¢, and it is written:

lim (f) = o0 (4.3.8)

Tr—cC

If Yo € R, 36> 0:
0<z—c¢c<d = f(r)>a, VzeA

Ordered Functions If f (z) < g (), then:

lim (f) = 00 = lim () = oo (43.7 (a))
lim (g) = —c0 = lim (f) = ~o0 (4.3.7 (b))

10
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Limits at Infinity [4.3.10]

It is also useful to talk about limits as = tends to oo
Let (a,00) € A C R for some ainR
It is aid that the limit of f as x — oo is L, and it is written:
lim (f)=1L (4.3.10)

T—r 00

If Ve > 0, 3K > 0:
r>K = |f(z)—L|<e

Limits at Infinity in Terms of Sequences [4.3.11] equivalently to
(4.3.10), the definition can be expressed in terms of sequences:

Every sequence (x,) in A N (a,00) that has lim(z,) = oo is such that the
sequence (f (x,)) converges to L

Infinite Limits at Infinity So this basically combines [4.3.10] with [4.3.5]
Let (a,00) € A C R for some a € R

It is aid that f tends to co as z — oo, and it is written:

lim (f) =00 (4.3.13)

T—r00

IfVe >0, 4K > a:
x>K = f(z) >«

Infinite Limits at Infinity in Terms of Sequences [4.3.14] equiv-
alently to (4.3.13), the definition can be expressed in terms of sequences:

Every sequence (z,) in AN (a,00) that has lim(z,) = oo is such that the
limit of the sequence of function values lim (f (z,,)) = o0

Ratios of Functions This result uses (4.3.14) to restate (3.6.5) in terms
of functions:
If g() >0 Vo >aand L # 0 is defined:

, f(z)
lima— 0o (g (m)) (4.3.15)
then,
L>0 = lim (f) =0 < li(m) (4.3.15 (1))
T—00 T—00(g)=00

L<0 = ml m (f)=—-o00 < lim (4.3.15 (ii))

i
—00 z—00(g)=00

11
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