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Any function which is analytic at a point z0 must have a Taylor series about z0.
For, if f is analytic at z0, it is analytic throughout some neighborhood |z − z0| < ε

of that point (Sec. 24) ; and ε may serve as the value of R0 in the statement of
Taylor’s theorem. Also, if f is entire, R0 can be chosen arbitrarily large ; and the
condition of validity becomes |z − z0| < ∞. The series then converges to f (z) at
each point z in the finite plane.

When it is known that f is analytic everywhere inside a circle centered at
z0, convergence of its Taylor series about z0 to f (z) for each point z within that
circle is ensured; no test for the convergence of the series is even required. In fact,
according to Taylor’s theorem, the series converges to f (z) within the circle about
z0 whose radius is the distance from z0 to the nearest point z1 at which f fails to
be analytic. In Sec. 65, we shall find that this is actually the largest circle centered
at z0 such that the series converges to f (z) for all z interior to it.

In the following section, we shall first prove Taylor’s theorem when z0 = 0, in
which case f is assumed to be analytic throughout a disk |z| < R0 and series (1)
becomes a Maclaurin series:

f (z) =
∞∑

n=0

f (n)(0)

n!
zn (|z| < R0).(4)

The proof when z0 is arbitrary will follow as an immediate consequence. A reader
who wishes to accept the proof of Taylor’s theorem can easily skip to the examples
in Sec. 59.

58. PROOF OF TAYLOR’S THEOREM

To begin the derivation of representation (4), Sec. 57, we write |z| = r and let
C0 denote and positively oriented circle |z| = r0, where r < r0 < R0 (see Fig. 75).
Since f is analytic inside and on the circle C0 and since the point z is interior to
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C0, the Cauchy integral formula

f (z) = 1

2πi

∫
C0

f (s) ds

s − z
(1)

applies.
Now the factor 1/(s − z) in the integrand here can be put in the form

1

s − z
= 1

s
· 1

1 − (z/s)
;(2)

and we know from the example in Sec. 56 that

1

1 − z
=

N−1∑
n=0

zn + zN

1 − z
(3)

when z is any complex number other than unity. Replacing z by z/s in expression
(3), then, we can rewrite equation (2) as

1

s − z
=

N−1∑
n=0

1

sn+1
zn + zN 1

(s − z)sN
.(4)

Multiplying through this equation by f (s) and then integrating each side with respect
to s around C0, we find that

∫
C0

f (s) ds

s − z
=

N−1∑
n=0

∫
C0

f (s) ds

sn+1
zn + zN

∫
C0

f (s) ds

(s − z)sN
.

In view of expression (1) and the fact that (Sec. 51)

1

2πi

∫
C0

f (s) ds

sn+1
= f (n)(0)

n!
(n = 0, 1, 2, . . .),

this reduces, after we multiply through by 1/(2πi), to

f (z) =
N−1∑
n=0

f (n)(0)

n!
zn + ρN(z),(5)

where

ρN(z) = zN

2πi

∫
C0

f (s) ds

(s − z)sN
.(6)

Representation (4) in Sec. 57 now follows once it is shown that

lim
N→∞

ρN(z) = 0.(7)
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To accomplish this, we recall that |z| = r and that C0 has radius r0, where r0 > r .
Then, if s is a point on C0, we can see that

|s − z| ≥ ||s| − |z|| = r0 − r.

Consequently, if M denotes the maximum value of |f (s)| on C0,

|ρN(z)| ≤ rN

2π
· M

(r0 − r)rN
0

2πr0 = Mr0

r0 − r

(
r

r0

)N

.

Inasmuch as (r/r0) < 1, limit (7) clearly holds.
To verify the theorem when the disk of radius R0 is centered at an arbitrary point

z0, we suppose that f is analytic when |z − z0| < R0 and note that the composite
function f (z + z0) must be analytic when |(z + z0) − z0| < R0. This last inequality
is, of course, just |z| < R0 ; and, if we write g(z) = f (z + z0), the analyticity of g

in the disk |z| < R0 ensures the existence of a Maclaurin series representation:

g(z) =
∞∑

n=0

g(n)(0)

n!
zn (|z| < R0).

That is,

f (z + z0) =
∞∑

n=0

f (n)(z0)

n!
zn (|z| < R0).

After replacing z by z − z0 in this equation and its condition of validity, we have
the desired Taylor series expansion (1) in Sec. 57.

59. EXAMPLES

In Sec. 66, we shall see that if there are constants an (n = 0, 1, 2, . . .) such that

f (z) =
∞∑

n=0

an(z − z0)
n

for all points z interior to some circle centered at z0, then the power series here must
be the Taylor series for f about z0, regardless of how those constants arise. This
observation often allows us to find the coefficients an in Taylor series in more efficient
ways than by appealing directly to the formula an = f (n)(z0)/n! in Taylor’s theorem.

In the following examples, we use the formula in Taylor’s theorem to find
the Maclaurin series expansions of some fairly simple functions, and we emphasize
the use of those expansions in finding other representations. In our examples, we
shall freely use expected properties of convergent series, such as those verified in
Exercises 7 and 8, Sec. 56.

EXAMPLE 1. Since the function f (z) = ez is entire, it has a Maclaurin
series representation which is valid for all z. Here f (n)(z) = ez (n = 0, 1, 2, . . .) ;


