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Example

Because the terms inside the power series has a factorial the only test that will work is the limit ratio test
so we use that to evaluate convergence. 1

let
:

 The power series converges if and only
.

Representing a function as a Power Series

Ordinary functions can be represented as power series, this can be useful to deal with integrals that don't
have an elementary anti-derivative.

1. Geometric Series

First take the Series:

So now consider the geometric series:

2. Using The Geometric Series to Create a Power Series

Take for example the function:

This could be represented as a power series by observing that:

f (x) = ∑∞
n=0 [n! ⋅xn]

an = n! ⋅xn

= lim
n→∞

∣
∣
∣

∣
∣
∣

= (n + 1) ⋅ |x|
= 0 ⟺ x = 0

limn→∞ |an+1|

limn→∞ |an|

(n + 1)! ⋅xn ⋅x

n! ⋅xn

∴
x = 0

Sn =

n∑
n=0 rk

= 1 + r+ r2 + r3… + rn−1 + rn

⟹ r ⋅Sn = r+ r2 + r3 + r4… rn + rn+1

⟹ Sn − r ⋅Cn = 1 + rn+1

⟹ Sn =
1 + rn+1

1 − r

∞∑
k=0 [xk] = lim

n→∞ [
n∑

k=0 xk]
= lim

n→∞ [ ]
=

=

=

1 +xn+1

1 −x

1 + limn→∞ [xn+1]
1 −x

1 + 0
1 −x

1
1 −x
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1
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∞



And then simply putting in the value of
 :

Calculus Rules and Series

The laws of differentiation allow the following relationships:

1. Differentiation

2. Integration

Taylor Series

This is the important one, the idea being that you can use this to easily represent any function as an
infinite series:

Consider the pattern formed by taking derivatives of
:

Following this pattern forward:

Hence, if there exists a power series to represent the function
, then it must be:

=

∞∑
n=0 [#n

1]
1

1 − #1

#1 = (−x2)

=

∞∑
n=0 [(−x2)n]1

1 − (−x2)

(
∞∑
n=1 cn(z− a)n) =

∞∑
n=1 [ (cn(z− a)n)]d

dx
d

dx

∫ (
∞∑
n=1 cn(z− a)n) dx =

∞∑
n=1 [cn(z− a)n]

f (z) = ∑∞
n=1cn(z− a)n

f (z) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + …
⟹ f (a) = c0

f ′ (z) = c1 + 2c2(z− a) + 3c3(z− a)2 + 4c4(z− a)3

⟹ f ′ (a) = c1

f ′′ (z) = 2c2 + 3 × 2 × c3(z− a) + 4 × 3c4(z− a)2 + …
⟹ f ′′ (a) = 2 ⋅ c2

f ′′′ (z) = 3 × 2 × 1 ⋅ c3 + 4 × 3 × 2c4(z− a) + …
⟹ f ′′′ (a) = 3!c3

f (n) (a) = n! ⋅ cn

⟹ cn =
f (n) (a)

n!

f

f (z) =

∞∑
n=0 [ (x− a)n]f (n) (a)

n!



If the power series is centred around 0, it is then called a Mclaurin Series.

1. Power Series Expansion of

Modelling Normal Distribution

The Normal Distribution is a probability density function that is essentially modelled after observation.2

what is the
-axis in a Density curve? ggplot2 ATTACH

Consider a histogram of some continuous normally distributed data:

e

f (z) = ez =

∞∑
n=0 [ ⋅xn]

=

∞∑
n=0 [ xn]

=

∞∑
n=0 [ ]

f (n) (0)

n!

e0

n!

xn

n!

y

# layout(mat = matrix(1:6, nrow = 3))
 layout(matrix(1:6, 3, 2, byrow = TRUE))

 x <- rnorm(10000, mean = 0, sd = 1)
 sd(x)
 hist(rnorm(10000), breaks = 5, freq = FALSE)
 ## curve(dnorm(x, 0, 1), add = TRUE, lwd = 3, col = "royalblue")

 hist(rnorm(10000), breaks = 10, freq = FALSE)
 ## curve(dnorm(x, 0, 1), add = TRUE, lwd = 3, col = "royalblue")

 hist(rnorm(10000), breaks = 15, freq = FALSE)
##  curve(dnorm(x, 0, 1), add = TRUE, lwd = 3, col = "royalblue")

 hist(rnorm(10000), breaks = 20, freq = FALSE)
  curve(dnorm(x, 0, 1), add = TRUE, lwd = 3, col = "royalblue")

 hist(rnorm(10000), breaks = 25, freq = FALSE)
  curve(dnorm(x, 0, 1), add = TRUE, lwd = 3, col = "royalblue")

 hist(x, breaks = 30, freq = FALSE, col = "lightblue")
 curve(dnorm(x, 0, 1), add = TRUE, lwd = 3, col = "royalblue")



(Or in ggplot2) as described in listing 3 and shown in figure 1

library(tidyverse)
library(gridExtra)
x <- rnorm(10000)
x <- tibble::enframe(x)
head(x)
PlotList <- list()
for (i in seq(from = 5, to = 30, by = 5)) {
  PlotList[[i/5]] <- ggplot(data = x, mapping = aes(x = value)) +
    geom_histogram(aes(y = ..density..), col = "royalblue", fill = "lightblue", bins = i) 
    stat_function(fun = dnorm, args = list(mean = 0, sd = 1))+
    theme_classic()
}

# arrangeGrob(grobs = PlotList, layout_matrix = matrix(1:6, nrow = 3))
grid.arrange(grobs = PlotList, layout_matrix = matrix(1:6, nrow = 3))



Observe that the outline of the frequencies can be made arbitrarily close to a curve given that the bin-
width is made sufficiently small. This curve, known as the probability density function, represents the
frequency of observation around that value, or more accurately the area beneath the curve around that
point on the

-axis will be the probability of observing values within that corresponding interval.x



Strictly speaking the curve is the rate of change of the probability at that point as well.

Defining the Normal Distribution

Data are said to be normally distributed if, the plot of the frequency density curve is such that:

The rate of change is proportional to:
The distance of the score from the mean

The frequencies themselves.

If the Normal Distribution was only proportional to the distance from the mean (i.e.
) the model would be a parabola that dips below zero, as shown in 3.2.3, so it is necessary

to provide the restriction that the rate of change is also proportional to the frequency (i.e.
).

let
 be the frequency of observation around
, following these rules the plot would come to look something like figure 4:

Bell Curve

Modelling only distance from the mean

If we presumed the frequency (which we will call
 on the
-axis) was proportional only to the distance from the mean the model would be a parabola:

(f) ∝ −(x−μ)d
dx

∝ fd
dx

(x ∝ −(x−μ)

y ∝ y

f

x

f

y

d



Using integration by substitution:

and hence

Clearly the problem with this model is that it allows for probabilities less than zero, hence the model
needs to be refined to:

incorporate a slower rate of change for smaller values of
 (approaching 0)

incorporate a faster rate of change for larger values of

offset by the the condition that

Incorporating Proportional to Frequency

In order to make the curve bevel out for smaller values of
 it is sufficient to implement the condition that

:

Putting both Conditions together

So in order to model the bell-curve we need:

∝ −(x−μ)

= −k(x−μ) , ∃k ∈ R

∫ dx = −∫ (x−μ)dx

df
dx
df
dx

df
dx

let: v = x−μ

⟹ = 1

⟹ dv = dx

dv
dx

∫ dx = −∫ (x−μ)dx

⟹ ∫ dp = −∫ vdv

p = − v2 ⋅ k+C

p = − (x−μ)2 ⋅ k+C

df
dx

1
2
1
2

f

f

∝ −(x−μ)df

dx

f

∝ f
df

dx

∝ f

∫ ⋅ dx = k ⋅ ∫ dx

ln |f| = k ⋅x
f = C ⋅ e±x

f ∝ e±x

df
dx

1
f

df
dx

∝ ∧ ∝ −( − )



because
 by definition, the absolute value operators may be dispensed with:

Now that the function has been solved it is necessary to apply the IC's in order to further simplify it.

1. IC, Probability Adds to 1

The area bound by the curve must be 1 because it represents probability, hence:

Using integration by substitution:

hence:

Because this is a definite integral
 is merely a dummy variable and instead we can make the substitution of
 and
 for clarity sake.

Now presume that the definite integral is equal to some real constant
:

f ∝ f ∧ f ∝ −(x−μ)

⟹ ∝ −f (x−μ)

∫ df = −k ⋅ ∫ (x−μ)dx

ln |f| = −k∫ (x−μ)dx

df
dx

1
f

f > 0

ln(f) = −k ⋅ (x−μ)2 +C

f ∝ e

1
2

(x−μ)2

2

1 = ∫ ∞

−∞
fdf

1 = −C∫ ∞

−∞
e (x−μ)2

df
k

2

let: u2 = (x−μ)2

u = √ (x−μ)

= √

k

2
k

2

du
dx

k

2

1 = −C∫ ∞

−∞
e (x−μ)2

1 = √ ⋅C∫ ∞

−∞
e−u2du

12 = (√ ⋅C∫ ∞

−∞
e−u2du)2

12 = (√ ⋅C∫ ∞

−∞
e−u2du) × (√ ⋅C∫ ∞

−∞
e−u2du)

k

2

2
k

2
k

2
k

2
k

u

x

y

12 = (√ ⋅C∫ ∞

−∞
e−x2dx) × (√ ⋅C∫ ∞

−∞
e−y2dy)2

k

2
k

β ∈ R

∞2



This integral will be easier to evaluate in polar co-ordinates, a double integral may be evaluated in
polar co-ordinates using the following relationship: 3

hence this simplifies to:

Because the integrand is of the form
 we may use integration by substitution:

and hence:

So from before:

1 = ⋅C2∫ ∞

−∞
e−y2dy×β

= ⋅C2∫ ∞

−∞
β ⋅ e−y2dy

= ⋅C2 ⋅ ∫ ∞

−∞
(∫ ∞

−∞
e−x2dx) e−y2dy

= ⋅C2∫ ∞

−∞
∫ ∞

−∞
e−(x2+y2)dxdy

2
k

2
k

2
k

2
k

∬
D

f (x,y)dA = ∫ β

α

∫ h2(ϕ)

h1(ϕ)
f (r ⋅ cos(ϕ),r ⋅ sin(ϕ))drdϕ

1 = c2∫ 2π

0
∫ r

0
r ⋅ e(r⋅cosθ)2+(r⋅sinθ)2

drdθ

1 = c2∫ 2π

0
∫ r

0
r ⋅ er2drdθ

2
k

2
k

f ′ (x) × g (f (x))

let: u = −r2

= −2r

dr = − du

du
dr

1
2r

1 = c2∫ 2π

0
∫ r

0
r ⋅ er2drdθ

⟹ 1 = − c2∫ 2π

0
∫ ∞

0
r ⋅ er2drdθ

2
k

2
k

1 = c2∫ 2π

0
∫ r

0
r ⋅ er2drdθ

⟹ 1 = − c2∫ 2π

0
∫ ∞

0
− e−ududθ

= c2∫ 2π

0
∫ ∞

0
e−ududθ

= c2∫ 2π

0
[−e−u]∞

0 dθ

1 = c22π

⟹ C2 =

2
k

2
k

1
2

1
k

1
k

1
k
k

2π



so now we simply need to apply the next initial condition.

2. IC, Mean Value and Standard Deviation

1. Definitions

The definition of the expected value, where
 is a probability function is: 4

That is, roughly, the sum of the expected proportion of occurence.

The definition of the variance is:

which can be roughly interpreted as the sum of the proportion of squared distance units from
the mean. The standard deviation is

.

2. Expected Value of the Normal Distribution

The expected value of the normal distribution is
, this can be shown rigorously:

Observe that the limits of integration will also remain as
 following the substitution:

Hence the Expected value of the standard normal distribution is
 and so
.

f = −C ⋅ ek⋅

= −√ ⋅ ek⋅

(x−μ)2

2

k

2π

(x−μ)2

2

f(x)

μ = E(x) = ∫ b

a

x ⋅ f (x)dx

V (x) = ∫ b

a

(x−μ)2f (x)dx

σ = √V(x)

μ

let: v = x−μ

⟹ dv = dx

±∞

E (v) = ∫ ∞

−∞
v × f (v)dv

= k ⋅ ∫ ∞

−∞
v ⋅ ev2dv

= [ex2]∞

∞

= lim
b→∞ [[ex2]b

−b
]

= lim
b→∞ [eb2 − e(−b)2]

= lim
b→∞ [0] ×

= × 0

= 0

1
2
1
2
1
2

1
2

1
2

0 = x−μ

E(x) = μ



3. Variance of the Normal Distribution

Now that the expected value has been confirmed, consider the variance of the distribution:

Now observe that
 appears as an exponential and as a factor if this is redefined as

 we have:

Now the integrand is of the form
 meaning that the only strategy to potentially deal with it is integration by parts:

where:

 is a function that simplifies with differentiation
 is something that can be integrated

Hence the value of the variance may be solved:

Now that the expected value has been confirmed, consider the variance of the distribution:

Now observe that
 appears as an exponential and as a factor if this is redefined as

 we have:

Now the integrand is of the form
 meaning that the only strategy to potentially deal with it is integration by parts:

where:

 is a function that simplifies with differentiation
 is something that can be integrated

σ2 = ∫ ∞

−∞
(x−μ)2 × f (x)dx

(x−μ)
w = x−μ ⟹ dx = dw

σ2 = √ ∫ ∞

−∞
w2e− w2dw

k

2
k

2

f (x) × g (x)

∫ udv = u ⋅ v − ∫ vdu

u

dv

u = w dv = w ⋅ e− w2dw

⟹ du = dw ⟹ v = ∫ w ⋅ e w2dw

⟹ v = e w2

k

2

k

2

1
k

k

2

σ2 = ∫ ∞

−∞
(x−μ)2 × f (x)dx

= ∫ ∞

−∞
(x−μ)2 × (√ e− (x−μ)2) dx

= √ ∫ ∞

−∞
(x−μ)2 × (e− (x−μ)2) dx

k

2π
k

2

k

2π
k

2

(x−μ)
w = x−μ ⟹ dx = dw

σ2 = √ ∫ ∞

−∞
w2e− w2dw

k

2
k

2

f (x) × g (x)

∫ udv = u ⋅ v − ∫ vdu

u

dv



Hence the value of the variance may be solved:

The left term evaluates to zero and the right term is the area beneath the bell curve with
mean value 0 and so evaluates to 1:

So the function for the density curve can be simplified:

now let
, this then simplifies to:

Now using the power series identity from BEFORE :

We can solve the integral of
 (which has no elementary integral.

u = w dv = w ⋅ e− w2dw

⟹ du = dw ⟹ v = ∫ w ⋅ e w2dw

⟹ v = e w2

k

2

k

2

1
k

k

2

σ2 = √ ∫ ∞

−∞
w2e− w2dw

= √ [u ⋅ v − ∫ vdu]∞

∞

= √ ([ ⋅ e− w2]∞

∞
− ∫ ∞

−∞
e w2dw)

= √ [ ⋅ e− w2]∞

∞
− (√ ∫ ∞

−∞
e w2dw)

k

2π
k

2

k

2π

k

2π
−w
k

k

2
1
k

k

2

k

2π
−w
k

k

2
1
k

k

2π
k

2

σ2 = 0 −

⟹ k =

1
k

1
σ2

= −√ ⋅ ek⋅

= √ ⋅ e ⋅

k

2π

(x−μ)2

2

1
2πσ2

1
2

(x−μ)2

σ2

z = ⟹ dz =x−μ

σ

dx
σ

f (x) = √ ⋅ e− z21
2π

1
2

e− z2 =

∞∑
n=0

⎡⎢⎢⎣
⎤⎥⎥⎦

1
2

(− z2)n
1
2

n!

f (x)

∞ ⎡ ⎤



Although this is a power series it still gives a method to solve the area beneath the curve of
the density function of the normal distribution.

Understanding the p-value
Let's say that I'm given 100 vials of medication and in reality only 10 of them are actually effective.

POS POS POS POS POS POS POS POS POS POS
:-: :-: :-: :-: :-: :-: :-: :-: :-: :-:
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG

We don't know which ones are effective so It is necessary for the effective medications to be detected by
experiment. Let:

the p-value be 9% for detecting a significant effect
assume the statistical power is 70%

So this means that the corresponding errors are:

1. Of the 90 Negative Drugs,
 will be identified as Positive ( False Positive) a. This means 72 will be correctly

identified as negative. (TN)
2. Of the 10 Good drugs

 will be labelled as negative (False Negative) b. This means 8 will be correctly
identified as positive (True Positive)

These results can be summarised as:

Really Negative Really Positive

f (x) = √ ⋅

∞∑
n=0

⎡⎢⎢⎣
⎤⎥⎥⎦

∫ f (x)dx = ∫
∞∑
n=0

⎡⎢⎢⎣
⎤⎥⎥⎦ dz

= ⋅

∞∑
n=0 [∫ dz]

= ⋅

∞∑
n=0 [ ]

1
2π

(− z2)n
1
2

n!

1

√2π

(− z2)n
1
2

n!

1

√2π

(−1)−1z2n

2n ⋅n!

1

√2π

(−1)n ⋅ z2n+1

2n (2n + 1)n!

α× 90 ≈ 8

β× 10 = 3



Predicted Negative
TNR; (

)
FNR;

Predicted Positive FPR; TPR (
)

And a table visualising the results:

TP TP TP TP TP TP TP FN FN FN
:-: :-: :-: :-: :-: :-: :-: :-: :-: :-:
FP FP FP FP FP FP FP FP TN TN
TN TN TN TN TN TN TN TN TN TN
TN TN TN TN TN TN TN TN TN TN
TN TN TN TN TN TN TN TN TN TN
TN TN TN TN TN TN TN TN TN TN
TN TN TN TN TN TN TN TN TN TN
TN TN TN TN TN TN TN TN TN TN
TN TN TN TN TN TN TN TN TN TN
TN TN TN TN TN TN TN TN TN TN
TN TN TN TN TN TN TN TN TN TN

So looking at this table, it should be clear that:

If the null hypothesis had been true, the probability of a False Positive

would indeed have been

The probability of incorrectly rejecting the null hypothesis though is the

number of FP from anything identified as positive

False Positive Rate

The False Positive Rate is expected to be
 it is:

False Discovery Rate

The False discovery Rate is the proportion of observations considered as positive (or significant) that are
False Positives. If you took all the results you considered as positive and pulled one out, the probability
that one was a false positive (and you were commiting a type I error) would be the FDR and could be
much higher than the FPR.

Measuring Probability

1 −α β× 10 = 3

FPR = α× 90 ≈ 8 1 −β

≈ 0.098
90

≈ 0.57
7+6

α

E (FPR) = α;

FPR =

=

=

= 9%

FP

N
FP

FN +TP

8
8 + 72



In setting
 as 9% I've said that 'if the null hypothesis was true and every vial was negative, 9% of them would be

false positives', this means that in practice 9% of the negative vials would be detected as false positives (I
wouldn't count the positives because my

 assumption was made under the assumption that everything was negative, hence 9% of the negative
vials will be false positives).

So this measures the probability of rejecting the null hypothesis if it were true.

It does not measure the probability of rejecting the null hypothesis but then being mistaken, because to
reject the null hypothesis it is necessary to consider observations that are considered positive (whether or
not they actually are), the number of those that are False Positive would represent the probability of
committing a type 1 error in that experiment

So the
 -value measures the probability of committing a type I error under the assumption that the null

hypothesis is true.

The FDR represents the actual probability of committing a type I error when taking multiple
comparisons.

Comparing
 and the p-value

The distinction between
 and
 -value is essentially that the
 value is set as a significance standard and the
 -value represents the probability of getting a test-statistic
 the observed value

The
 value is the probability of

Rejecting the null hypothesis under the assumption that the null hypothesis is true.

This will be the False Positive Rate:

The proportion of Negative Observations misclassified as Positive will be the False Positive
Rate.

Be careful though because this is not necessarily the probability of incorrectly rejecting the null
hypothesis there is also the the

:

The proportion of observations classified as positive that are false positives, this estimates
the probability of rejecting the null hypothesis and being wrong. (whereas the

 value is the probability of rejecting the null hypothesis under the assumption it was true
this is different from the probability of rejecting

 and being wrong, which is the FDR).

The
 -value is the corresponding probability of the test statistic that was returned, so they mean essentially

the same thing, but the
 value is set before hand and the
-value is set after the fact:

The
-value is the probability, under the assumption that there is no true effect or no true

α

α

p

α

α

p

α

p

≥

α

FDR = FP

TP+FP

α

H0

p

α

p

p



difference, of collecting data that shows a difference equal to or more extreme than what
was actually observed.

Wikipedia Links

Helpful Wikipedia Links

False Positive Rate
False Discovery Rate
Sensitivity and Specificity
ROC Curve

This has all the TP FP calculations
Type I and Type II Errors

This has the useful Tables and SVG Density Curve

Calculating Power
Statistical Power is the probability of rejecting the null hypothesis assuming that the null hypothesis is
false (True Positive).

Complementary to the False Positive Rate and False Detection Rate, the power is distinct from the
probability of correctly rejecting the null hypothesis, which is the probability of selecting a True Positive
from all observations determined to be positive (the Positive Predictive Value or the Precision):

Example

Problem

An ISP stated that users average 10 hours a week of internet usage, it is already known that the standard
deviation of this population is 5.2 hours. A sample of

 was taken to verify this claim with an average of
.

A worldwide census determined that the average is in fact 12 hours a week not 10.

Solution

1. Hypotheses

1.  The Null Hypothesis that the average internet usage is 10 hours per week
2.  The Alternative Hypothesis that the average internet usage exceeds 10 hours a

week

2. Data

Value Description

PPV =

FDR =

α = =

β = =

TP

TP +FP
FP

TP +FN

FP

N

TP

TN +FP

TP

P

TP

TP +FN

n = 100
x̄

H0 :
Ha :

https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/False_discovery_rate
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Positive_predictive_value


The Sample Size

The Standard Deviation of internet usage of the population
The alleged average internet usage.
The average of the sample
The actual average from the population
The probability of a type 1 error at which the null hypothesis is rejected
The probability of a type 2 error

Step 1; Find the Critical Sample Mean (
)

The Central Limit Theorem provides that the mean value of a sample that is:

sufficiently large, or
drawn from a normally distributed population

will be normally distributed, so if we took various samples of a population and recorded all the sample
means in a set

 we would have: will be normally distributed, so if we took various samples of a population and
recorded all the sample means in a set

 we would have:

And hence we may conclude that:

Thus
 is rejected for a sample mean of 10.86 hours per week at a confidence level of

.

Step 2: Find the Difference between the Critical and True Means as a Z-Value
(prob of Type II)

The probability of accepting the null hypothesis assuming that it is false, is the probability of getting a
value less than the critical value given that the mean value is actually 12:

n = 100

σ = 5.2
μ = 10

x̄ = 11
μTrue = 12

α = 0.05
β =??

x̄crit

¯̄¯̄̄
X

¯̄¯̄̄
X

¯̄¯̄̄
X ∼ N (μ,( ))σ

√n

Z =

⟹ ¯̄x̄crit = μ + zα ⋅ ( )
¯̄x̄crit = μ + z0.05 ⋅ ( )
¯̄x̄crit = μ + 1.645 ⋅ ( )

= 10.8554

¯̄x̄ −μ

( )σ

√n

σ

√n

σ

√n

5.2

√100

H0

α = 0.05

z =

= = −2.2

¯̄x̄crit −μtrue

( )σ

√n

10.86 − 12
5.2
10



Step 3: State the value of

Step 4: State the Power Value

Confidence Intervals
Khan Academy

According to Khan Academy:

This means that for any sample drawn from the population, the true population value would
be found within this interval for 0.95 of those samples

The Confidence Interval is not the probability ATTACH

adapted from:

https://qr.ae/pNrVlx
https://qr.ae/pNrV6y

PDF Version

I assume that the motivation for this question is that most statistics books emphasize the fact that, once
you have taken a sample and constructed the confidence interval (CI), there is no longer any
“randomness” left in a CI statement (except for the Bayesian point of view which thinks of

 as being a random variable).

That is, when reporting a CI: “I am 95% confident that the mean is between 25.1 and 32.6” is correct.
“There is a 95% probability that the mean is between 25.1 and 32.6” is WRONG. Either μ is in that
interval or not; there is no probability associated with it.

The Reasoning

Suppose that somewhere on the wall is an “invisible bullseye” — a special point (call it “ μ ”) which only
I can see. I’m going to throw a dart at μ . Based on long observation, you know that when I throw a dart
at something, 95% of the time, my dart will hit within 6 inches of what I was aiming at. (The other 5% of
the time, I miss by more than 6 inches.) When you see where that dart lands, you will draw a circle
around it with a radius of 6 inches.

It is correct to say:

The probability that μ will be in that circle is 95%.

10

β

β = P (Type II Error)
= P (H0 is not rejected ∣ H0 is false)

= P (μ¯̄ ¯̄¯X Crit
< ¯̄x̄crit ∣ μ = 12)

= 0.014

Power = (H0 is not rejected ∣ H0 is false)

= P (μ¯̄ ¯̄¯X Crit
< ¯̄x̄Crit)

= 1 −β

= 1 − 0.14
= 98.6%

μ

https://www.khanacademy.org/math/ap-statistics/estimating-confidence-ap/introduction-confidence-intervals/a/interpreting-confidence-levels-and-confidence-intervals
https://qr.ae/pNrVlx
https://qr.ae/pNrV6y
file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/ConfIntNotes.pdf


The reason that is correct is, I have not yet thrown the dart, so the location of the circle is random, and in
95% of repetitions of this dart-throwing, circle-drawing routine, μ will be in the resulting circle. Now if I
actually take aim, throw my dart, and it hits …

It is no longer correct to talk about probabilities. You can be pretty sure that μ is within that circle. To be
specific, “pretty sure” = “95% confident.” But you cannot say that the probability that μ is in that circle is
95%, because μ is not random.This throw might have been one of the 5% of throws that miss μ by more
than 6 inches.

Let’s assume we want a 95% CI for μ from a normal population with a known standard deviation σ , so
the margin of error is:

Then
 is the “dart” we are throwing at μ.

Before you take the sample and compute the mean, you have:

This is correct because
 is a random variable. However, once you compute the mean

 (lowercase x meaning it is now just a number, not a random quantity), the inequality:

is either true or false; the “dart” has landed at
 , and we don’t know if this was one of the throws that is within M of μ.

Classical Confidence Interval

A classical confidence interval contains all values for which the data do not reject the null hypothesis
that the parameter is equal to that value.

This does not necessarily tell you anything regarding the probability that the parameter is in the interval.

If however you intended to take a sample of the data and draw a 92% confidence interval, there would be
a 92% probability of the population mean being within that interval, if however you drew that sample
and created that interval the the probability of the invisible point μ being within that interval can't really
be known because we just don't know where it is relative to the dart (i.e. how well the sample reflects
the population).

Weekly Material
(3); Comparison of Population Samples wk3

Lecture

1. Boxplots

The delimiting marks in box plots correspond to the median and interquarlite range (which is
basically the median of all data below the median):

right here ⟹ ⋅

M = 1.96
σ

√n

¯̄¯̄̄
X

P(¯̄¯̄̄
X −M < μ < ¯̄¯̄̄

X +M) = 95%

¯̄¯̄̄
X
¯̄x̄

¯̄x̄ −M < μ < ¯̄x̄ +M

¯̄x̄



2. Lecture Announcements

Everything is online now. We'll be using Zoom a lot.

1. DONE Finish Quiz 1

2. TODO Finish Quiz 1

30 minutes to finish it, Test your computer First.

3. Post pacman on the mailing list.

3. Naming Variables

Attribute … Data Base

4. DONE Review Chi Distribution,

1. Is it in VNote?

2. Should I put it in org-mode?

5. DONE Fix YAML Headers in rmd to play ball with Notable

1. DONE Post this use-case to Reddit

2. DONE Fix YAMLTags and TagFilter and Post to Reddit bash

The Bash Script is here

library("ggplot2")
ggplot(iris, aes(x = Sepal.Width, y = Sepal.Length, color = Species)) +
geom_boxplot() +
theme_bw()

file:///home/ryan/DotFiles/Scripts/bin/tagFilter.sh


1. TODO Post an easy way to use this to the mailing list

Here is a start that I've made

2. Should I have all the lists and shit in /tmp

Pros Cons
Less Mess Harder to Directly watch what's happening
Easier to manage 5

should I use /tmp or /tmp/Notes or somting?

3. DONE Is there an easy way to pass the md off to vnote

Or should I just use the ln -s ~/Notes/DataSci /tmp/notes trick?

Follow the instructions here, it has to be done manually and then symlinked
SCHEDULED: <2020-03-21 Sat>

4. Should I have all the lists and shit in /tmp

Pros Cons
Less Mess Harder to Directly watch what's happening
Easier to manage 6

should I use /tmp or /tmp/Notes or somting?

3. DONE Is there a way to fix the Text Size of Code in emacs when I zoom out?

Yeah just disable M-x mixed-pitch-mode

6. Calculalating mean

The mean value is nice in that it has good mathematical properties, so for predictions and
classifications (like gradient descent), if the model contains the mean the model will be smooth
and the mean will lead to a well behaved model with respect to the derivative.

The Median value, however is more immune to large outliers, for example:

7. Calculating Range

8. Calculating Variance

library(tidyverse)
bwt <- c(3429, 3229, 3657, 3514, 3086, 3886)
(bwt <- sort(bwt))
mean(bwt)
mean(c(3429, 3514))
median(bwt)
max(bwt)-min(bwt)

library(tidyverse)
x <- c(rnorm(10), 9) * 10 %>% round(1)
mean(x); median(x)

range(bwt)
bwt %>% range %>% diff

manual.org::*With%20VNote
file:///home/ryan/Dropbox/Notes/Org/~/Notes/MD/NoteTaking/VNote_Tips-Tricks.md


9. InterQuartile Data

Tutorial

The tutorial work is located at ~/Notes/DataSci/ThinkingAboutData and linked here:

PDF
HTML
MD
RMD

DONE (4); Using Student's t-Distribution wk4

The tutorial work is located at ~/Notes/DataSci/ThinkingAboutData and linked here:

PDF
HTML
MD
RMD

DONE (5) Discrete Distributions (Mapping Disease) wk5

Lecture
Practical

RMD File

DONE Quizz for t Distribution Material

The Quiz has been Released

03 Tutorial

Tutorial 3

04 Tutorial
Lecture 03
Lecture 04

Lecture

The Poisson Model is the Binomial Model stretch towards its limits.

1. Combinatorics

The Counting Formulas are:

selection ordered unordered
With Repetition
Without Repetition

Where:

(var <- (bwt-mean(bwt))^2 %>%  mean)
var(bwt)
(sd <- (bwt-mean(bwt))^2 %>%  %>% sqrt) # Not using n-1 !!
(sd <- sqrt(sum((bwt-mean(bwt))^2)/(length(bwt) -1)))
sd(bwt)
mean(sum((bwt-mean(bwt))^2))

nm ( )m+n−1
n

n(m) ( )n
m

file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/03_Summarising_Data.pdf
file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/03_Summarising_Data.nb.html
file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/03_Summarising_Data.md
file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/03_Summarising_Data.Rmd
file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/03_Summarising_Data.pdf
file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/03_Summarising_Data.nb.html
file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/03_Summarising_Data.md
file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/03_Summarising_Data.Rmd
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week05.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet05.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Notes/DataSci/ThinkingAboutData/05_Mapping_Disease.Rmd
https://vuws.westernsydney.edu.au/webapps/blackboard/execute/announcement?method=search&context=mybb&searchSelect=_31732_1
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Notes/DataSci/ThinkingAboutData/03_Summarising_Data.Rmd
file:///home/ryan/Dropbox/Notes/Org/~/Notes/DataSci/ThinkingAboutData/03_Summarising_Data.md
file:///home/ryan/Dropbox/Notes/DataSci/ThinkingAboutData/04_t-test.Rmd
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week03.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week04.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Notes/MD/Mathematics/DiscreteMathematics/Counting_Formulas.md


2. Binomial Distribution

A Binomial experiment requires the following conditions:

1. We have n independent events.
2. Each event has the same probability p of success.
3. We are interested in the number of successes from the

 trials (referred to as size in R.
4. The probability of k successes from the n trials is a Binomial distribution with

probabilities:

1. Problem

Hard drives have an annual failure rate of 10%, what is the probability of 2 hard drives
failing after 3 years?

This means that:

The number of repetitions is 3 (
 = size = 3)

The statistic we are interested in is 2 (
 = x = 2)

So in this case there would only a 2% chance.

3. Poisson

An interesting thing with the poisson distribution is that the mean value and the variance are both
equal.

The expected value is the limit that the mean value would approach if the sample was made
arbitrarily large, the value is denoted

Poisson is French for fish so sometimes people call the distribution the fishribution.

4. Binomial and Poisson

The Poisson distribution is derived from the Binomial distribution.

If
 is close to 1 then

( ) = =n

m

m(n)

n!
m!

n!(m−n)!

n(m) = n!
(n−m)!

n! = n × (n − 1) × (n − 2) × 2 × 1

n

P (k) = ( )pk(1 − p)n−kn

k

n

k

dbinom(x = 2, size = 3, prob = 0.1)

## For Hard Drives
    ## k/x....is the number of years
    ## n/ ....size is the number of failures
    ## p  ....is the probability of failure

## choose(n,k)*p^k*(1-p)^(n-k)
## dbinom(x = 2, size = 4, prob = p)

λ

(1 − p)



, so for very large sample sizes we have the expected value equal to the variance,
and a Poisson distribution.

This has something to do with widely increasing the number of trials, like say if we hade an
infinite number of trials with the probability of success in a given hour as 30%.

For a binomial distribution there are a set number of trials, let's say 8 trials with a 20% probability
of Success:

1 2 3 4 5 6 7 8
F S F F S S F F

In this case there are 3 successes, so let's set
 and instead however the region was divided into smaller spaces (

):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X S X X S S F F X S X X S S F F

If we kept dividing this up we would have

The poisson is the limit as we increase the number of trials but try to keep
 constant??

5. Confidence Intervals

1. Binomial

Just use bootstrapping, but also you can just use an approximate standardisation:

So an approximate 95% confidence interval could be

This is the normal data, but remember that this is estimating binomial by standard normal
and so will only be good for large values of n because binomial is discrete by nature.

See the Correlation Notes and Khan Academy and 6 section [[]]

This means that for any sample drawn from the population, the true population
value would be found within this interval for 0.95 of those samples

2. Poisson

This can also be done with Poisson by bootstrapping or using the same trick of
 as the variance:

np(1 − p) ≈ np

k = 3
n → ∞

k

σ = √p (1 − p)

σ¯̄x̄ =

=  

⟹ p− z0.025 ×σ¯̄x̄ <p < p− z0.975 ×σ¯̄x̄

⟹ p− 1.96σ¯̄x̄ <p < p− z0.9751.96σ¯̄x̄

σ

√n

√p (1 − p)

√n

λ

file:///home/ryan/Notes/MD/University/Thinking_About_Data/07_Correlation.md
https://www.khanacademy.org/math/ap-statistics/estimating-confidence-ap/introduction-confidence-intervals/a/interpreting-confidence-levels-and-confidence-intervals


6. Summary

Binomial for independent trials
mean: np
variance: np(1-p)

standard error roughly is

Poisson for number of events in a given period
mean λ
variance λ
Standard error roughly is

Choropleth maps are useful for visualising changes over area.

Tutorial

05_RMD File
05_MD File
05_PDF File
05_HTML File

DONE (6) Paired t-test (Observation or Experiment) wk6

06 Lecture Notes
06 Practical

RMD File

TODO (7) Corellation (Do Taller People Earn More) wk7

07 Lecture Notes
07 Practical

RMD File

DONE Lecture

In the past we did categorical and categorical-continuous.

Now we're doing purely continuous.

1. DONE How to Derive the Correlation Coefficient

Refer to this paper The Correlation coefficient can be interpreted in one of two ways:

The covariance scaled relative to the
 and

σ = √λ

σ¯̄x̄ =

=  

⟹ λ− z0.025 ×σ¯̄x̄ <p < λ+ z0.975 ×σ¯̄x̄

λ− 1.96σ¯̄x̄ <p < λ+ 1.96σ¯̄x̄

p− 1.96√ <p < p− z0.9751.96√

σ

√n

√λ

√n

λ

n

λ

n

√ p̂(1−p̂)
n

√ λ̂

n

x

file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Notes/DataSci/ThinkingAboutData/05_Mapping_Disease.Rmd
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Notes/DataSci/ThinkingAboutData/05_Mapping_Disease.md
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Notes/DataSci/ThinkingAboutData/05_Mapping_Disease.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Notes/DataSci/ThinkingAboutData/05_Mapping_Disease.HTML
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week06.slides.pdf
file:///home/ryan/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet06.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Notes/DataSci/ThinkingAboutData/06_Sampling_Data.Rmd
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week07.slides.pdf
file:///home/ryan/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet07.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Notes/DataSci/ThinkingAboutData/07_Correlation.Rmd
file:///home/ryan/Dropbox/Notes/Org/Attachments/Thinking_About_Data/correlation.pdf


 variance

The rate of change of the line of best fit of the standardised data
This is equivalent to the rate of change of the line of best fit divided by

:

This can be seen by performing linear regression in R:

  speed dist
1     4    2
2     4   10
3     7    4
4     7   22
5     8   16
6     9   10

[1] 0.8068949

[1] 0.8068949

    speed 
0.8068949

    speed 
0.8068949

y

ρ =
Sx,y

sx⋅sy

( )
sy

sx

ρ = b ⋅ ⟺ ŷi = bxi + c
sx

sy

head(cars)
cars_std <- as.data.frame(scale(cars))
y <- cars$dist
x <- cars$speed

## Correlation Coefficient
cor(x = cars$speed, y = cars$dist)

## Covariance
cov(x = cars$speed, y = cars$dist)/sd(cars$speed)/sd(cars$dist)

## Standardised Rate of Change
lm(dist ~ speed, data = cars_std)$coefficients[2]

### Using Standardised Rate of change
lm(dist ~ speed, data = cars)$coefficients[2] / (sd(y)/sd(x))

#+BEGIN_SRC R :cache yes :exports both :results output graphics :file ./test.png
  library("ggplot2")
  cars_std <- as.data.frame(scale(cars))

  ggplot(cars_std, aes(x = speed, y = dist)) +
  geom_point() +
  geom_smooth(method = "lm") +
  theme_bw()



This shows that despite noise data can still have a correlation coefficient of 1 if the noise is evenly
distributed in a way that the correlation coefficient can have a rate of change of 1.

2. TODO Prove the Correlation Coefficient and email Laurence

3. Bootstrapping

The big assumption with bootstrapping is that the population can be seen as equiv to an infinite
repetition of the sample size.

So assume that a population that is an infinite repetition of the sample, then take a sample of that
infinite population and you have a bootstrap.

So we could either create a population from the sample with a size of
, which might be difficult, or, we could instead just resample the observation for each

replication.

4. Confidence Intervals

Attached RMD

5. TODO Questions

∞

  load("Notes/DataSci/ThinkingAboutData/TAD.rdata ")
  r = cor(crabsmolt$postsz, crabsmolt$presz)
  a <- crabsmolt
  N <- nrow(crabsmolt)
  pos <- sample(N, size = N, replace = TRUE)
  aboot <- a[pos,]

  cor(aboot$postsz, aboot$presz)

#  replicate(10^4, {})

file:///home/ryan/Dropbox/Notes/Org/04_t-test.Rmd


[[file:~/Dropbox/Notes/DataSci/ThinkingAboutData/04_t-test.Rmd::For proofs refer to the [org
file](https://ryangreenup.github.io/Org-Publish/ThinkingAboutData.html#org0ac88e7).][In this
part]] would it simply be equivalent to take the mean of all observations?

TODO (8) No Really do they Earn More? wk8

TODO Lecture

TODO Tutorial

RMD File

wk9 Break wk9

TODO (9) Do redheads have a lower pain threshold? wk10

TODO (10) What is Normal? wk11

TODO (11) Normality as opposed to deviant etc. wk12

TODO (12) When it all goes Wrong wk13

TODO (13) Exam Prep wk14

Symlinks to Material

Lecture

Lecture 04
Lecture 05
Lecture 06
Lecture 07
Lecture 08
Lecture 09
Lecture 10
Lecture 11
Lecture 12
Lecture 13
Lecture 14

Tutorial

Worksheet 01
Worksheet 02
Worksheet 03
Worksheet 04
Worksheet 05
Worksheet 06
Worksheet 07
Worksheet 08
Worksheet 09
Worksheet 10
Worksheet 11
Worksheet 12

file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Notes/DataSci/ThinkingAboutData/04_t-test.Rmd
https://ryangreenup.github.io/Org-Publish/ThinkingAboutData.html#org0ac88e7
file:///home/ryan/Dropbox/Notes/DataSci/ThinkingAboutData/08_Linear_Regression.Rmd
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week04.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week05.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week06.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week07.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week08.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week09.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week10.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week11.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week12.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week13.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/301108.week14.slides.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet01.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet02.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet03.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet04.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet05.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet06.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet07.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet08.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet09.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet10.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet11.pdf
file:///home/ryan/Dropbox/Notes/Org/~/Dropbox/Studies/2020Autumn/ThinkingAboutData/Seperate%20Files/Worksheet12.pdf


Worksheet 13
Worksheet 14

Central Limit Theorem
The central Limit theorem provides us the sampling distribution of

 even when we don't know what the original population of
 looks like:

1. If the population is normal, the sample mean of that population will be

normally distributed,

1. As sample size
 increases, the distribution of sample means converges to

the population mean

i.e. the standard error of the mean

 will become smaller

1. If the sample size (of sample means) is large enough (
) the sample

means will be normally distributed even if the original population is non-normal

1. Refer to Solving Series Strategy↩︎

2. The Normal Distribution↩︎

3. Calculus III - Double Integrals in Polar Coordinates↩︎

4. Expected Value and Variance↩︎

5. By which I mean I'm not sure if the directory that the 00tagmatch directory 00taglist file will be
made in are the wd of bash, or, if they are the location of ~/Notes

I'm also not sure how that will be influenced by looking for #tags in the ~/Notes/DataSci
Directory↩︎

6. By which I mean I'm not sure if the directory that the 00tagmatch directory 00taglist file will be
made in are the wd of bash, or, if they are the location of ~/Notes

I'm also not sure how that will be influenced by looking for #tags in the ~/Notes/DataSci
Directory↩︎

¯̄¯̄̄
X

X

¯̄¯̄̄
X ∼ N (μ( ))σ

√n

n

μ

σ¯̄x̄ = ( )σ

√n

n ≥ 30
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https://ltcconline.net/greenl/courses/117/doubintprob/expvalvariance.htm
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